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ABSTRACT 
The Multilevel Adaptive cross Approximation (MLACA), an algorithm to solve MoM electromagnetic problems with 

computational cost O(N2) and a storage scaling with O(NlogN), is presented here and for the first time applied to a 

whole electromagnetic problem and not only to the interaction between blocks whose containing spheres do not 

intersect each other. For compressing an off-diagonal submatrix of the method of moments (MoM) impedance matrix 

with a binary tree, the L-level MLACA includes L + 1 steps, and each step includes 2L ACA-SVD decompositions. 
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     INTRODUCTION 
Electromagnetic analysis of the interaction of electromagnetic waves with dielectric bodies plays a pivotal role in a 

variety of highly complex areas like radio-wave propagation, scattering by and detection of airborne particulates, 

medical diagnostics, radome design, non-linear eddy current analysis, surface tomography, analysis of scattering by 

anisotropic and high contrast complex media like magnetic photonic crystals, for these areas and in particular, due to 

the continued increase of integrated circuit problem complexity, there is an ever increasing demand of reducing both 

memory and timing requirements. 

 

Fast computation of the electromagnetic characteristic of large complex object has been a challenging problem in 

computing electromagnetism. It plays an important role in the research of radar target identification, the stealth and 

anti-stealth technology, and the design of modern antenna systems. As the state-of-art method in computing 

electromagnetism, Adaptive cross approximation (ACA) and its recursive variant, the multilevel Adaptive cross 

approximation (MLACA) have been widely used to accelerate the matrix-vector product when solving 

electromagnetic surface integral equations by iterative method. When MLACA is used, the computational and memory 

requirements are both alleviated form O(N2) to O(NlogN). With the need of solving larger and more complex 

problems, parallelizing MLACA is a good choice. There are several challenges in parallel MLACA, one is to achieve 

scalability comparing with the number of processors and another is to achieve load balance and data communication 

efficiency independent of irregular problem shape. In order to overcome these problems, we use a parallel compressed 

octree based domain decomposition method, which can make every processor auto load-balanced in depend of the 

irregular problem shape. 

 

When solving scattering problem with iterative method, the matrix vector product that is required by an iterative solver 

is computed as follows: the matrix is decomposed into a nearfield part and a far field part. The nearfield matrix is 

computed once as common moment method matrix and used in every iteration. The product of the far field matrix 

with the vector is computed using MLACA in every iteration. To implement MLACA, an octree data structure should 

be built first using a recursive decomposition of domain with each node in the tree represents a cubical box. For each 

node in the octree, two list must be constructed: the near-list and the far-list. 
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THEORY 

Finite Element Method 

Finite element method (FEM) is a numerical method for solving a differential or integral equation. It has been applied 

to a number of physical problems, where the governing differential equations are available. The method essentially 

consists of assuming the piecewise continuous function for the solution and obtaining the parameters of the functions 

in a manner that reduces the error in the solution. In this article, a brief introduction to finite element method is 

provided. The method is illustrated with the help of the plane stress and plane strain formulation. 

 

FEM formulation for a linear differential equation 

A linear differential equation can be of the following form: 

Lu+q=0 ,                                                                         (1)                                                                

 

where u is the vector of primary variables of the problem, which are functions of the coordinates, L is the differential 

operator and q is the vector of known functions. This differential equation will be subjected to boundary conditions, 

which are usually of two types- (i) the essential boundary conditions (ii) the natural boundary conditions. The essential 

boundary conditions are the set of boundary conditions that are sufficient for solving the differential equations 

completely. The natural boundary conditions are the boundary conditions involving higher order derivative terms and 

are not sufficient for solving the differential equation completely, requiring atleast one essential boundary condition. 

For example, consider the differential equation: 
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                                                      (2)                                                                                              

 

This problem can be solved completely under one of the following two conditions: 

(i) u is prescribed at both ends. 

(ii) u is prescribed at one end and du/dx is prescribed at the same or other end. 

 

However, the problem cannot be solved if only du/dx is prescribed at both ends. Thus, we surely require one boundary 

condition prescribing u. Therefore, for this problem u= u* is an essential 

boundary condition and du/dx= (du/dx)* is a natural boundary condition, where * indicates the 

prescribed value. Now consider the differential equation 
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This differential equation can be solved completely by specifying w and dw/dx at both ends. One can also specify 

d2w/dx2 and/or d3w/dx3 as boundary conditions, however out of total four boundary conditions, two must be of one of 

the following forms: 

(i) w prescribed at both ends. 

(ii) w prescribed at one end and dw/dx prescribed at the other end. 

 

Thus, the prescribed values of w and dw/dx form the part of essential boundary conditions and 

prescribed values of d2w/dx2 and d3w/dx3 form the part of natural boundary conditions. 

Two popular FEM formulations are Galerkin formulation and Ritz formulation. In Galerkin 

formulation, the primary variable is approximated by a continuous function inside the element. When the approximate 

primary variable ue is substituted in Eq. (1), we shall get residue depending on the approximating function, i.e., 

LUe+q=R                                                                              (4)                                                                                         

 

Ideally, the residue should be zero everywhere. In that case, approximation becomes equal to true 

value. As it is very difficult to make the residue 0 at all points, we make the weighted residual equal to zero, i.e., 

  0WRdA                                                                     (5)                                                                                       
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where w is the weight function. In order to weaken the requirement on the differentiability of the 

approximating function, we integrate Eq. (5) by parts to redistribute the order of derivative in w and R. In Galerkin 

method, the weight function is chosen of the same form as the approximating 

function. The approximating function is some algebraic function. It is common to replace the unknown coefficients 

of the function by unknown nodal degrees of freedom. Thus, typically, 

}]{[ nee uNu                                                                    (6)                                                                                       

 

where [N] is the matrix of shape functions and {une} is the nodal degrees of freedom. 

 

In Ritz formulation, the differential equation Eq. (1) is converted into an integral form using 

calculus of variation. (Sometimes the integral form itself may be easily derivable from the physics of the problem.)  

The approximation (Eq. (6)) is substituted in the integral form and the form is extremized by partially differentiating 

with respect to {une}. 

 

After obtaining the elemental equations, the assembly is performed. A simple way of assembly is 

to write equations for each element in global form and then add each similar equations of all the elements, i.e., we add 

the equation number 1 from each element to obtain the first global equation, all equation number 2 are added together 

to give second equation, and so on. The boundary conditions are applied to assembled equation and then are solved 

by a suitable solver. Then, post-processing is carried out to obtain the derivatives. 

 

Integral Equation Method (IE) 

In mathematics, an integral equation is an equation in which an unknown function appears under an integral sign. 

There is a close connection between differential and integral equations, and some problems may be formulated either 

way. See, for example, Green's function, Fredholm theory, and Maxwell's equations. 

 

Method of Moments 

Iterative techniques are typically used for the solution of a large system of linear equations arising from the method 

of moments (MOM) formulation, often in conjunction with efficient algorithms for matrix-vector multiplication, as 

for instance the fast multipole method (FMM) and the multilevel fast multipole algorithm (MLFMA). 

 

To deal with electromagnetic problems scattering and radiation of unbounded space, solving of method of 

moments(MOM) is only about the electric filed on the surface of scattering target rather then the whole space, thus 

the region to be solved reduced a dimension, greatly reduce the number of unknown variables. The moment’s method 

has the incomparable advantage with other methods in efficient and distinctive. 

 

The coefficient matrix of linear equation in the classic method of moments is dense. Its storage is O(N2),where N is 

the number of unknowns ,the computational complexity reach O(N3) with the direct method to solve. Increasing along 

with the electrical size of scattering target, the corresponding coefficient matrix is also getting bigger and bigger, such 

a complexity has restricted the scale of the problem for solving, and also the applied range of the moment’s method. 

When N gets bigger, iterative method of linear equation must be used. The total computation load is decided by the 

order of complexity in each iteration and total times of iteration, the zero elements of coefficient matrix are more, the 

coefficient matrix is sparser, and the calculation complexity then is lower. The total times of iteration depends on the 

behavior of matrix, the lower the condition number of coefficient matrix, the less iteration is needed to convergent. 

 

Direct Solver 

Most of examiners for large-scale parallel structural analysis using finite element method have focused on iterative 

solution methods since direct solution methods normally have many difficulties and disadvantages for large-scale 

problems. However due to the numerical robustness of direct methods that guarantees the solution to be obtained 

within estimated time, direct methods are much more advantageous for general application of large-scale structural 

analysis, as well as due to ease of use which makes most of structural engineers prefer direct methods. 
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Direct solvers perform direct factorization of a global stiffness matrix with the non-zero pattern of the matrix 

considered and then solve the equation by substitution procedure, so the solution always can be found after required 

computational operations are completed unless the rank of the stiffness matrix is deficient. 

 

Fast Iterative  Solver 

Iterative solvers use a completely altered approach for solving large systems of linear equations than direct solvers. 

The iterative solver method is based on the preconditioned conjugate gradient method. It starts out with an initial guess 

which is, for instance, the zero vector and experiences an iterative procedure to update the arrangement vector in each 

iteration utilizing the system matrix and a preconditioner matrix to focalize to the arrangement. A merging basis is 

utilized to figure out if the exactness of the arrangement is worthy or more iteration is expected to enhance the 

accuracy. On the off chance that a pre-decided most extreme number of iterations is come to without getting the 

desired accuracy of the solution, the solver exits with the message that it couldn't unite to the right solution.  

 

Convergence of the solver and the convergence rate are dependent on the preconditioner used. For a simple 

preconditioner, work done and memory required is less for every iteration, however, the solvers take many iterations 

to convergence or will not converge at all. More refined preconditioners require more memory and more work in every 

iterations, but they may converge quickly to the correct solution. Iterative solver has been better and tuned 

continuously with regard to applicability, convergence rate, memory usage, performance and spill logic. The decision 

of the direct versus the iterative solution technique relies upon the sort of components in the model, the shape of the 

model, the computer assets and the kind of examination. The user ought to ask whether the principle objective is to 

run a job as quick as would be prudent or to have the capacity to run a job at all given specific computer assets. For 

models worked from 2D components it is constantly prescribed to utilize the direct solver while for models of 3D 

components the iterative solver should to be preferred. 

 

There are many methods to implement a fast iterative solver depending upon the models used one of the method used 

is a Adaptive Cross Approximation(ACA) and advanced one is Multilevel Adaptive Cross Approximation(MLACA). 

 

Multilevel Adaptive Cross Approximation(MLACA) 

Imagine we have two objects contained within two spheres that do not intersect each other. We shall call them source 

and observation objects respectively. Applying the Method of Moments (MoM) it is possible to express the interaction 

between them with a matrix Zmn with dimensions m× n, where m and n are the number of basis functions in which 

the observation and source object have been discretized, respectively. In the first place, we must subdivide each object 

recursively into smaller domains in a binary tree manner, so in each subdivision approximately half of the basis 

functions goes to each side. The number of levels is L meaning that at the finest level we have in each subset 

approximately M = N/2L elements considering N = n = m. For asymptotical analysis L is going to be chosen to yield 

a fixed value of M or equivalently, a fixed minimum box electrical size. 

 

A scheme of the algorithm is shown in figure 1. The idea is to express the initial matrix Zmn as a product of L+2 

matrices Zmn=A(L+!) B(L+1)B(L)…….B(1) 

 

 In the step 0 (figure 1(a)) Zmn is transformed into two new matrices A0
(1) and B0

(1) . The procedure to obtain them is 

to split Zmn into strips, corresponding to the interaction of each subset of basis functions at the finest level in the source 

object with the whole observation object. Now each of those strips only has k degrees of freedom, therefore can be 

compressed with the ACA-SVD algorithm and regrouped as is shown in figure 1(a). Note that the matrix to store is 

B0
(1) which has 2L blocks in the diagonal of size k × n/2L and is orthogonal. 

For each i = 1, . . . ,L and each j = 0, . . . , 2i-1−1 the matrices from the step i−1, Aj
(i) , are transformed into four new 

matrices 
1

12

1

2

1

12

1

2 ,,, 







 i

j

i

j

i

j

i

j BBAA (figure2.1(b)). The initial matrix 
i

jA is split into two sets of rows corresponding to 

the next subdivision in the observation object tree. On the other hand, the strips are grouped in pairs corresponding 

to the previous level in the source object tree. As the source is doubled in size and the observation is divided by two, 

the number of degrees of freedom of the new substrips is again k [3], and therefore can be recompressed using the 

ACA-SVD algorithm to obtain the new matrices. After the step i = L we have the whole set of matrices which 

correctly combined represent a compressed version of the matrix Zmn. It can be proved that the memory required to 
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store those matrices at the end of the algorithm is proportional to kNlogN and as the size of the finest level is 

constant with respect to N, we have that k is constant, and therefore the memory scales with O(NlogN). 

Consequently, the computational cost of a product of the matrix Zmn with a vector scales also with O(NlogN). The 

computational cost to build the compressed matrix can be proved to be O(N2), which is asymptotically better than 

for single-level ACA. 

 
Figure 1:Graphical representation of the matrix transformations in the MLACA algorithm described in 

section“Description of the algorithm”. First step or step 0 (a) and step i (b) with i>=1. 

 

NUMERICAL RESULTS 
In this section we evaluate the performance and stability of the proposed technique i.e. for the electro-magnetic 

analysis of different components. 
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Fig 3. Graph representation 

 

Computational Complexities 

In the above, computational complexities of the algorithms are expressed in terms of P, which is the number of 

harmonics required to express the scattered field of a larger scatterer made up of N subscatterers. Clearly then, P 

depends on N. The exact dependence of P on N is determined by the geometry. Table 1 summarizes this dependence 

for some interesting cases. 

 

 
Table 1: Dependence of P on N and consequently the expressions for the computational complexities are 

determined by the geometry. 
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